Structure Reports

Online
ISSN 1600-5368

Aquabis(2-formyl-6-methoxyphenolato)copper(II)

Zhi-Dong Lin ${ }^{\text {a,b }}$ * and Wen Zeng ${ }^{\text {a }}$

${ }^{\text {a }}$ School of Material [or Materials?] Science and Technology, Wuhan Institute of Chemical Technology, Wuhan 430073, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of New Nonferrous Metal Materials, Gansu University of Technology, Lanzhou 730050, People's Republic
of China
Correspondence e-mail: zhidong.lin@126.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.109$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title mononuclear complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ atom is five-coordinated by four O atoms from two 2 -formyl-6-methoxyphenolate ligands and one O atom from a water molecule, to form a slightly distorted square-pyramidal coordination geometry. Centrosymmetric dimers are formed through intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and these dimers are further linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional network.

Comment

Schiff base metal complexes have been of interest in coordination chemistry for many years because of their facile synthesis and wide applications (Garnovskii et al., 1993). These complexes make a significant contribution in the development of catalysis and enzymatic reactions, magnetism, molecular architectures and materials chemistry (Archer, 1993; Ziesel, 2001). In an attempt to obtain an o-vanillin Schiff base complex, copper acetate and hydrazine-1,2-diylidene-bis(methan-1-yl-1-ylidene)bis(2-methoxyphenol) were reacted in an ethanol solution, but after slow evaporation of a solution of the product, crystals of the unexpected title compound, (I), were formed.

(I)

2-Hydroxy-3-methoxybenzaldehyde is a potential bidentate ligand with versatile binding modes. However, reported crystal structures of metal complexes with o-vanillin are rare. In the molecular structure of (I) (Fig. 1), the $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated in a slightly distorted square-pyramidal geometry by four O atoms from two bidentate 2-formyl-6-methoxyphenolate ligands in the basal plane and an O atom from the coordinated water molecule in the apical position. The dihedral angle between the planes of the two benzene rings is $5.66(4)^{\circ}$. The $\mathrm{Cu}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles (Table 1) are within the expected ranges (Alcock et al., 1996; Morshedi et al., 2006). In the crystal structure, the coordinated water

Figure 1
The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level.
molecule forms intermolecular hydrogen bonds (Table 2) with the carboxyl and methoxy groups of a symmetry-related molecule to form a centrosymmetric dimer. These dimers are, in turn, linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional network (Fig. 2).

Experimental

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(1 \mathrm{mmol}, 181 \mathrm{mg})$ and hydrazine-1,2-diylidene-bis(methan-1-yl-1-ylidene)bis(2-methoxyphenol) ($1 \mathrm{mmol}, 300 \mathrm{mg}$) were dissolved in an ethanol solution (20 ml), and the mixture was then refluxed for 3 h with stirring. The resulting clear yellow solution was kept in air and, after slow evaporation of the solvent over a period of a week, black crystals of (I) were formed at the bottom of the vessel. The crystals were isolated, washed three times with ethanol and dried in a vacuum desicator using anhydrous CaCl_{2} (yield 38%). Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CuO}_{7}$: C $50.07, \mathrm{H} 4.20 \%$; found: C 50.36, H 4.52\%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=383.83$
Orthorhombic, Pbca
$a=15.2947$ (12) \AA
$b=11.7932$ (9) \AA
$c=17.9949$ (14) A
$V=3245.8(4) \AA^{3}$

Data collection

Siemens SMART CCD area-
detector diffractometer

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.733, T_{\max }=0.789
$$

Refinement

[^1]
$Z=8$

$D_{x}=1.571 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.38 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, black
$0.24 \times 0.22 \times 0.18 \mathrm{~mm}$

13485 measured reflections 2856 independent reflections 2323 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0669 P)^{2}\right. \\
& \quad+0.1633 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.035 \\
& \Delta \rho_{\max }=0.44 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
Crystal packing of (I), with $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds shown as dashed lines.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 2$	$1.9191(17)$	$\mathrm{Cu} 1-\mathrm{O} 6$	$1.965(2)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$1.9207(17)$	$\mathrm{Cu} 1-\mathrm{O} 7$	$2.2412(19)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.954(2)$		
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 5$	$87.89(7)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 6$	$85.83(10)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$91.46(9)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 7$	$99.05(7)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 3$	$167.67(9)$	$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 7$	$98.15(7)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 6$	$168.17(9)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 7$	$94.11(8)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 6$	$92.29(9)$	$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{O} 7$	$92.64(9)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 4^{\text {i }}$	0.85	2.27	2.893 (3)	130
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O}{ }^{\text {i }}$	0.82	2.44	2.908 (3)	117
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O}^{\mathrm{i}}$	0.85	2.15	2.896 (3)	146
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.43	3.346 (3)	168
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {iii }}$	0.93	2.56	3.325 (4)	140

H atoms bonded to C atoms were placed in calculated positions and were allowed to ride on their parent C atoms with a $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ for aromatic H atoms and $0.96 \AA$ for methyl H atoms, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. The H atoms of the coordinated water molecule were placed in calculated positions and were allowed to ride on their parent O atom, with $\mathrm{O}-\mathrm{H}=$ $0.85 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {iso }}(\mathrm{O} 7)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

metal-organic papers

The authors acknowledge financial support from the Bureau of Science and Technology of Wuhan City, Hubei Province, People's Republic of China (grant No. 2005500305928).

References

Alcock, N. W., Busch, D. H. \& Vance, A. L. (1996). Acta Cryst. C52, 1134-1136. Archer, R. A. (1993). Coord. Chem. Rev. 128, 49-68.

Garnovskii, A. D., Nivorozhkin, A. L. \& Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
Morshedi, M., Meghdadi, S. \& Schenk, K. J. (2006). Acta Cryst. C62, m87-m89.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Ziesel, R. (2001). Coord. Chem. Rev. 216-217, 195-223.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
 $w R\left(F^{2}\right)=0.109$
 $S=1.04$
 2856 reflections
 220 parameters
 H -atom parameters constrained

